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Surface electromyography (sEMG) is an electrophysiological reflection
of skeletal muscle contractile activity that can directly reflect neuromus-
cular activity. It has been a matter of research to investigate feature ex-
traction methods of sEMG signals. In this letter, we propose a feature
extraction method of sEMG signals based on the improved small-world
leaky echo state network (ISWLESN). The reservoir of leaky echo state
network (LESN) is connected by a random network. First, we improved
the reservoir of the echo state network (ESN) by these networks and
used edge-added probability to improve these networks. That idea en-
hances the adaptability of the reservoir, the generalization ability, and
the stability of ESN. Then we obtained the output weight of the net-
work through training and used it as features. We recorded the sEMG
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signals during different activities: falling, walking, sitting, squatting, go-
ing upstairs, and going downstairs. Afterward, we extracted correspond-
ing features by ISWLESN and used principal component analysis for
dimension reduction. At the end, scatter plot, the class separability index,
and the Davies-Bouldin index were used to assess the performance of fea-
tures. The results showed that the ISWLESN clustering performance was
better than those of LESN and ESN. By support vector machine, it was
also revealed that the performance of ISWLESN for classifying the activ-
ities was better than those of ESN and LESN.

1 Introduction

Surface electromyography (sEMG) is an electrophysiological reflection of
skeletal muscle contractile activity. Since it can directly reflect neuromuscu-
lar activity, it has been widely used in clinical diagnosis and rehabilitation
medicine (Cheng et al., 2018; Hu et al., 2018; Disselhorst-Klug, Williams,
& von Werder, 2018). Multichannel sEMG can provide a safe and noninva-
sive control mode for artificial limb movement and other advanced man-
machine interfaces (Mi, Zhou, Wei, Wang, & Zou, 2018; Gupta, Saxena, &
Sazid, 2018). With the recent developments in detection technology, signal
processing methods, and advances in computation, extracting useful fea-
tures from original sEMG signals has become one of the hot issues in the
study of sEMG (Al-Taee & Al-Jumaily, 2018).

Feature extraction, which is related to the quality of pattern recognition,
is the key to the analysis and processing of sEMG. The time domain, the fre-
quency domain, the time-frequency domain, and the nonlinear eigenstate
analysis have been proposed for feature extraction (Zhang & Huang, 2015;
Zhang, Huang, & Yang, 2013). Time-domain analysis (Lu, Chen, Li, Zhang,
& Zhou, 2014) is based on the amplitude of the signal, and its algorithm is
simple. The analysis, however, is used to deal with stationary signals, and
its antijamming ability is poor (Altın & Er, 2016). Frequency domain analy-
sis (Phinyomark, Limsakul, & Phukpattaranont, 2009) is mainly obtained by
power spectral density. Time-frequency domain analysis is a combination
of time and frequency that can characterize frequency changes at different
moments or positions and provide a large amount of nonstationary infor-
mation about the analyzed signals (Nazmi et al., 2016). Time-frequency
analysis includes, for example, short-time Fourier transform, wavelet anal-
ysis, wavelet packet energy, and high-order spectrum analysis of Wigner-
Ville distribution (Canal, 2010; Subasi, 2012; Farina, Févotte, Doncarli, &
Merletti, 2004). The main nonlinear feature methods include fractal di-
mension, approximate entropy, Hurst exponent, and correlation dimension,
which can extract hidden information from sEMG (Acharya, Ng, Swapna,
& Michelle, 2011).



Feature Extraction of sEMG Based on Improved Small-World Leaky ESN 743

As the research in the area has advanced, many new, in-depth problems
have surfaced that can hinder research progress. It is difficult to form com-
plete support for filtering technology from the view of feature extraction
alone. Statistics show that none of the features can fully reflect the mathe-
matical characteristics of sEMG signals in the face of more, and more com-
plex, feature extraction methods.

Peng, Peng, and Zhang (2018) used feature selection and ensemble learn-
ing to select the best feature set for gait phase detection and obtained an
average accuracy of 94.1%. Bu, Guo, Ma, Xu, and Wei (2018) extracted a
feature of bispectrum integration to recognize flexion and extension of con-
tinuous elbow, and the result showed that the classification accuracy of the
proposed feature was higher than that of time-frequency feature. Pancholi
and Joshi (2019) proposed a novel feature extraction method based on time-
derivative moments to improve the performance for motion classification of
the upper limb and obtained an acceptable recognition effect. Li, Li, Ju, Sun,
and Kong (2018) proposed a novel feature of active muscle regions (AMR)
to classify four hand motions; the result revealed that AMR had better clas-
sification performance than mean absolute value (MAV), waveform length
(WL), zero crossing (ZC), and slope sign changes (SSC). Wen, Zhang, Qiu,
Zeng, and Luo (2017) proposed a feature extraction method based on a two-
dimensional matrix image for sEMG during finger motion, and they found
that SVM can classify samples appropriately. Yu, Fan, Zhao, and Guo (2018)
used zero-crossing rate, short-time energy, and linear predictive coefficient
(LPC) to recognize hand gesture by backpropagation neural network and
obtained an accuracy rate of 96.41% to 99.70%.

Although the theoretical background in the previous studies is differ-
ent, they have used the same approach for feature extraction of sEMG.
They have tried to find some functions of sEMG and use them as features.
There are, however, some problems with this approach. sEMG is a complex
chaotic time series that contains a lot of information. After feature extrac-
tion, one or several descriptive quantities can be obtained, providing very
limited information. As a result, in the process of feature extraction, a large
amount of information is lost, which limits the improvement of automatic
classification accuracy of sEMG. Hence, it is necessary to seek a new feature
extraction method that can retain a large amount of original information.

The time series contains the running information of the system for
awhile. If the time series is analyzed and modeled, some inherent laws con-
tained in the system can be obtained. Through these laws, the current or
future situation of the system can be predicted. The prediction of time se-
ries can provide a fundamental theoretical basis and data support for peo-
ple’s judgment and decision making in many fields. Therefore, the analysis
and prediction of time series have become a hot research topic in scientific
research and practical engineering. The early time series prediction method
usually used the simple weighted average method to obtain the pre-
diction value for the data of the past time. The autoregression moving
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average model (ARMA) is the most widely used time series prediction
model in the early stage (Naik et al., 2018). Jaeger and Haas (2004) pro-
posed the echo state network (ESN) to predict the chaotic time series, and
their results showed that the prediction accuracy of the ESN was 2400 times
higher than that of the earlier methods. ESN has attracted extensive atten-
tion in the field of time series prediction because of its simple training and
high modeling accuracy.

The neuron model is an important research direction for optimizing ESN.
Related research (Holzmann & Hauser, 2010) has shown that the neuron
model would affect the nonlinear approximation and memory ability of
the network. Jaeger, Lukoševičius, Popovici, and Siewert (2007) proposed
a leaky integrator neuron to optimize ESN, and the result showed that
the performance of the ESN based on leaky-integrator neurons was better
than that of the traditional ESN as long as the appropriate leaky rate was
selected.

The topological structure is also one of the optimizations of the reser-
voir of ESN. The basic idea to improve ESN is to replace the traditional
sparse connection random structure with a structure with specific character-
istics. Kawai, Park, and Asada (2019) investigated the learning performance
of ESN with small-world topology as a reservoir. The results showed that
this performance was better than that of the traditional ESN in nonlinear
time-series prediction. Cui, Xiang, and Li (2012) used small-world, scale-
free topology and a mixture of small-world and scale-free topologies to im-
prove the reservoir topologies of ESN, respectively. The results showed the
proposed ESN models have better prediction capabilities compared to con-
ventional ESN.

Recent advances in machine learning and deep learning may have made
it feasible to extract features from unstructured data without depending
on any prior knowledge or assumptions (Goodfellow, Bengio, & Courville,
2016). Since the original data can be completely recovered with the extracted
feature vectors, the unsupervised feature extraction can effectively retain
useful information.

To address the problems of sEMG feature extraction, we applied ESN
to this extraction. Moreover, we improved traditional ESN and proposed
a novel sEMG feature extraction method based on improved small-world
echo state network (ISWLESN). This novel method can achieve the unsu-
pervised feature extraction of sEMG signals. In the process of feature extrac-
tion of sEMG signals, the loss of information is less than that of the previous
methods.

2 Methods

2.1 Echo State Network. Figure 1 shows the topology of the traditional
ESN. It consists of an input layer, a hidden layer (reservoir), and an output
layer, in which u(n), x(n), and y(n) (n is time step) represent the network
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Figure 1: Topology of traditional ESN.

input signal, the state of the reservoir, and the output, respectively. Suppose
that the ESN network has L input layer units, M output layer units, and N
hidden layer units. Usually Win is used as the connection weight matrix of
the input layer, Wres as the connection weight matrix within the reservoir,
Wout as the connection weight matrix of the output layer, and Wback as the
feedback weight matrix from the output layer to the hidden layer. Among
them, Win,Wres, and Wback are generated randomly before the network is es-
tablished, and Wout is calculated by training. The purpose of ESN is to de-
termine the output weight value.

The hidden state of the ESN is updated as

x(n) = f (Winu(n) + Wresx(n − 1) + Wbacky(n − 1)), (2.1)

where f () represents the activation function of the internal state, usually
the sigmoid function. When ESN is used for system identification and time
series prediction, there is no need for output feedback (Jaeger, 2003; Li, Han,
& Wang, 2012); therefore, Wback = 0.

The outputs of ESN are computed as

y(n) = g(Woutx(n)), (2.2)

where g() is the active function of the output unit (typically a linear function
or a sigmoid function).

The reservoir, the core part of ESN, is a randomly generated, large-scale,
sparse-join recursive structure. The parameter setting of reservoirs is a crit-
ical step in the training process of ESN, which has a significant influence on
performance. The parameters of reservoir include reservoir size, internal
connection power spectral radius, sparsity degree, and input scaling.

Here, reservoir size is the number of neurons in the reservoir, and the
size selection of the reservoir is related to the number of samples, which
has a high impact on network performance. As the reservoir size becomes
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larger, the description of the given dynamic system by ESN becomes more
accurate. Increasing the size, however, raises the overfitting problem.

In the experiments, Win is initialized with random values from a uniform
distribution. Then Wres is scaled by spectral radius λmax

Wres = α
W0

λmax
, (2.3)

where W0 is an initial connection weight matrix drawn from a uniform dis-
tribution, λmax is the maximum absolute value of the eigenvalue of W0 in
the reservoir, and α is a scaling constant expressing the eigenvalue of Wres.
Only when spectral radius satisfies α < 1 does ESN have the property of
echo state.

Not all neurons have connections. The sparsity degree indicates the per-
centage of processing unit connections in reservoir (usually 1% to 5% con-
nections). This parameter can measure the richness of the vectors contained
in the reservoir and affect the nonlinear approximation ability of the net-
work. Higher richness of the vector of the network leads to its stronger lin-
ear approximation ability.

Input scaling is a scale factor needed to multiply the input of the reservoir
before connecting to the internal neuron of the reservoir, that is, a scaling of
the input signal. The stronger linearity of the target results in larger input
scaling. Here the input scaling is set to 1.

The ESN training process determines the output weight matrix Wout

by a given training sample. The first m values of the training sample are
used to eliminate the effect of the initial states, as these internal states
x(1), x(2), . . . , x(m) may be affected by the initial states. Therefore, the inter-
nal state x(n) needs to be collected from the certain time m + 1 to calculate
Wout . ThenWout can be calculated according to the pseudo-inverse operation,

Wout = YM+, (2.4)

where Y is the target output, M = [ x(m + 1) x(m + 2), . . . , x(n) ] is the in-
ternal state matrix, and M+ is the pseudo-inverse matrix of M.

2.2 Leaky ESN. A leaky ESN (LESN) network is an improved model of
the ESN network, with its reservoir composed of leaky integrating neurons.
This type of neuron has independent state dynamics information and can
be adapted to the timing characteristics of network learning tasks in various
ways. LESN has the same topological structure as ESN, but modifies only
the state update equation of neurons in the reservoir of ESN,

x(n) = (1 − a)x(n − 1)

+ f (Winu(n) + Wresx(n − 1) + Wbacky(n − 1)), (2.5)

where a is leaky rate.
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It can be seen from equation 2.5 that ESN is a particular case of LESN at
a = 1. Another parameter can neutralize the effect of changing one parame-
ter on the result. As a result, the echo state characteristics of the network can
remain unaffected. The state update of reservoir of traditional ESN is less
affected by the previous state that will affect the memory function of the
network to a certain extent. LESN, however, makes the state update have
continuity, and it has certain advantages in slow learning and a continuous
change system. The low leaky rate also leads to the gradual change of x(n)
in the internal neuron state that significantly enhances ESN’s short-term
memory ability. Therefore, when the parameter selection is appropriate, the
reservoir performance of LESN is superior to that of traditional ESN.

The LESN mathematical model can be regarded as a low-pass filter act-
ing on the state neurons of reservoir. The leaky rate controls the degree of
preservation of the neuron state at the previous moment, and its cutoff fre-
quency is determined by parameter a. The small value will result in the
slow change of internal neuron state x(n), which significantly enhances the
short-term memory ability of ESN. LESN changes only the output connec-
tion weights in the training phase; the other weights are fixed.

2.3 Improved Small-World Leaky ESN. A small-world network is a
kind of network with a short, characteristic path length and a high cluster-
ing coefficient. It is a new network structure that combines the advantages
of regular and random networks. Through the connection weights of nodes,
the adjacency matrix of the small-world network is formed. The value of
the elements in the adjacency matrix is 1 or 0. This kind of connection is a
deterministic one that makes the small-world network unable to reflect a
complex network with ambiguity.

To address the problems we have identified, we propose an improved
small-world network that directly represents the connection weights of the
two nodes by using the edge-adding probability p. By establishing the func-
tion between the edge-adding probability and the distance between nodes,
the weight value of a sparse connection between nodes is obtained. The
range of values, which is between zero and one, indicates the degree of
connection between nodes. A shorter distance between nodes predicts a
higher probability of adding edges p, and, hence, a larger value of elements
in the corresponding adjacency matrix. The range of elements in the ad-
jacency matrix of the improved small-world network is between zero and
one. We structured a regular network in a flat sheet, and each connection
was rewired to a randomly selected node with probability p. In this letter,
the value of the edge-adding probability p decreases exponentially as the
distance between the nodes increases, as follows:

p = α × e−β×d, (2.6)

where the range of p, which is between zero and one, represents the connec-
tion weights between nodes, and d denotes the Euclidean distance between
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nodes, α is used to adjust the distance sensitivity, and β is used to adjust the
overall density of the network. In this letter, we chose α = 0.2, β = 10.

The performance of the LESN is related to its global parameters, such
as leaky rate and spectral radius. However, these parameters of LESN are
time invariant. To obtain the best prediction performance, it is necessary to
modify the global parameters of LESN dynamically according to the char-
acteristics of the time series. Since the small-world network can modify the
topology of the network by changing the edge-adding probability, it has
time-varying characteristics. Therefore, we propose an improved small-
world LESN (ISWLESN), which can dynamically improve the reservoir
topology of LESN by using the improved small-world network. That is, the
improved small-world network is used to replace LESN’s reservoir, which
makes the LESN translate into ISWLESN. The dynamic adjacency matrix
of the improved small-world network is treated as the sparse connection
weight matrix of the reservoir of LESN. It not only guarantees the sparse
connection between the neurons of the reservoir, but also reduces the blind-
ness of random connections. The adaptability of the reservoir of LESN is
improved.

ISWLESN uses the improved small-world network to dynamically direct
the sparse connection of the reservoir, which makes ISWLESN become a
time-varying and complex network. ISWLESN’s equation of the state can
be written as

x(n) = Ax(n − 1)

+ f (Winu(n) + Wresx(n − 1) + Wbacky(n − 1)), (2.7)

where A represents the connection weight matrix of the neuron of the
reservoir.

Equation 2.7 is equivalent to the state update equation of the LESN reser-
voir in the ISWLESN model, and the leaky rate becomes a matrix compared
to the traditional LESN. Therefore, A can also be regarded as the leaky rate
parameter matrix of the ISWLESN model. When A = (1 − a)I (I is an iden-
tity matrix), equation 2.7 is converted to equation 2.5, which indicates that
LESN is a special case of ISWLESN.

2.4 Feature Extraction of sEMG Based on ESN. Since the input weight
Win and internal weight Wres of ESN are fixed and the output weight is only
weight adjusted, Wout of the time series realized reflects the inherent differ-
ence in the internal dynamics of our time series.

In this way, we propose a new feature extraction method of sEMG that
can automatically learn sEMG features and adequately reflect the state of
activities.

1. According to the specified parameters, the corresponding reservoir
network is generated randomly, and the reservoir network is no
longer changed.
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2. The collected and processed sEMG signal xi(n) is used as the input
signal of the network (i represents ith channel sEMG signal, and n is
the sampling number of sEMG signal), and xi(n + 1) is used as the
target of the network to train the ESN network. The output weight
Wi

out after training is regarded as the feature of sEMG signal.

2.5 Performance Measurement. To evaluate the features extracted by
three different methods, we transform the features into a class separability
index (CSI) through Fisher discriminant function (Fisher, 1936; Huang, Zhu,
Zhou, & Peng, 2018).

Suppose that the sample vector is Xi = {xi
1, xi

2, . . . , xi
N} i = 1, 2, . . . ,C,

with C and N the number of classes and sample of class i, respectively. Then
the between-class scatter matrix Sb is computed as

Sb =
C∑

i=1

(mi − mm)(mi − mm)T , (2.8)

and the within-class scatter matrix SW is computed as

SW =
C∑

i=1

N∑
j=1

(xi
j − mi)(xi

j − mi)T , (2.9)

where mm is the mean value of all classes and mi is the mean value of
class i.

The CSI is computed as

CSI = tr(Sb)
tr(SW )

, (2.10)

where tr(Sb) is the trace of a matrix Sb, that is, the sum of the diagonal ele-
ments of the matrix. Therefore, a bigger CSI shows that the feature is better.

The Davies-Bouldin index (DBI) has been introduced to verify the reli-
ability of the feature (Coelho et al., 2012). DBI is a validity index for unsu-
pervised fuzzy clustering, which is used to determine whether the test set
can be divided into several categories. In unsupervised clustering, it is often
not clear how many types of sample data need to be classified. The princi-
ple is rooted in the degree of separation between different clusters and the
degree of dispersion in individual cluster (Davies & Bouldin, 1979). Math-
ematically, DBI is computed as

DBI = 1
K

K∑
i=1

max
j �=i

{
Ci + Cj

di j

}
(2.11)
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where Ci and Cj are the degree of dispersion in class i and class j, di j repre-
sents the distance between the center of clusters i and j, and K is the number
of clusters. Therefore, a smaller DBI shows that the feature is better.

Since DBI must be used under the unsupervised clustering method, we
introduce the fuzzy C-means clustering (FCM) method (Wu & Yang, 2002).
FCM is a clustering algorithm that determines the degree of each data point
belonging to a certain cluster by membership degree. The main idea is to
divide n vectors (i = 1, 2, . . . , n) into c fuzzy groups, find the clustering cen-
ters of each group, and minimize the nonsimilar indexes(such as Euclidean
distance).

3 Experimentation

Six healthy men (age range, 25 ± 2 years; weight range, 65 ± 5 kg; height
range, 170 ± 5 cm) and six healthy women (age range, 23 ± 2 years; weight
range, 46 ± 2 kg; height range, 162 ± 2 cm) were selected to investigate the
recognition effect of lower limb movement and study the feature extraction
method based on ESN. All the subjects read and signed an informed consent
form approved by an institutional review board.

Trigno Wireless EMG (Delsys Inc., Natick, MA, USA) was used to record
sEMG signals. Trigno sensors provide a 16-bit resolution, a 20 Hz to 450 Hz
bandwidth, and baseline noise of less than 1.25 μV.

During human lower limbs motor, different muscles are involved in dif-
ferent activities; therefore, there may be obvious difference in the signals
from different activities. These signals also have good periodicity. There-
fore, we mainly collect these muscle signals for research and analysis. Each
subject wore a Trigno wireless EMG sensor on his or her left leg during
the test. The sampling frequency of the sensor was set to 1000 Hz, and each
group of experiments consisted of falling, walking, sitting down, squatting,
going upstairs, and going downstairs, as shown in Figure 2. The partici-
pants were instructed that walking, going upstairs, and going downstairs
are controlled at a speed of about 1 m/s. We told them, “During sitting
down, keep your feet as wide as you stand, and keep your upper body
straight. During squatting, keep your feet as wide as you stand, and your
upper body in a straight state. For falling, fall on the ground when the exper-
imenter trips over an obstacle on the ground.” Every activity was repeated
20 times and completed in 2 seconds. There was enough time before every
activity to avoid muscle fatigue.

The collected signals were processed by the wavelet threshold denois-
ing algorithm (Azzalini, Farge, & Schneider, 2005). The number of layers in
wavelet decomposition was selected to compare scale coefficients with the
threshold. Then these wavelet coefficients were reconstructed to obtain the
denoised signal. Falling on the ground was done when the experimenter
tripped over an obstacle. Figure 3 shows the four-channel sEMG of falling.
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Figure 2: Experimental activities.

Figure 3: sEMG signals of falling.
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In this figure, CH1, CH2, CH3, and CH4 represent gastrocnemius, tibialis
anterior, vastus medialis, and vastus lateralis, respectively.

Since the network has 50 neurons and the dimension of the feature is
50, the large dimension reduces the quality of the feature space, recognition
speed, and accuracy. Therefore, we need to reduce the dimension of the
features. Principal component analysis (PCA) is the most commonly used
linear dimension-reduction method (Jolliffe, 2011). Its goal is to map high-
dimensional data to low-dimensional spatial representations through some
linear projection. It is expected that the variance of the data in the projected
dimension is the largest. This method helps to use fewer data dimensions
while retaining more of the characteristics of the original data. Therefore,
PCA reduces the feature dimensions to two dimensions.

4 Results

To verify the prediction effect of ISWLESN for the sEMG series, we trained
the network to obtain output weight Wout by sEMG signals. Then we used a
trained network to predict the track of the sEMG signal during the falling,
with the prediction performance evaluated by root mean squared error
(RMSE). The prediction result of sEMG can be seen in Figure 4. The result
shows that ISWLESN can predict the track of sEMG appropriately, and the
prediction error is very small (RMES = 3.7463e−6V). Since the original data
can be completely recovered with the extracted features by ISWLESN, we
can assume that all the key information of the original data is likely to be
stored in the extracted feature. Therefore, the output weight as a feature
may have a better classification effect.

Scatter plots are used to show the clustering degree of the features, with a
better clustering effect denoting a better feature. Figure 5 is the scatter plot
of the sEMG of the vastus lateralis after three different feature extraction
methods. Here, the extracted two-dimensional feature is defined as feature
1 and feature 2.

These three feature extraction methods can be well distinguished in Fig-
ure 5 for squatting and going downstairs. For falling, the ESN feature ex-
traction method is not very effective, but LESN and ISWLESN can be easily
distinguished. For the other three types of activities, the ESN feature distri-
bution has a point crossing, and the effect is unsatisfactory. For walking and
going upstairs, the feature points of the LESN are crossed and, unlike that
of ISWLESN, cannot be easily distinguished. In short, ISWLESN clustering
is better than that of LESN, and the LESN’s is better than the ESN’s.

To evaluate the significant difference in the six activities, a one-way anal-
ysis of variance (ANOVA) was performed for these activities. ANOVA was
calculated using the anova1() function of Matlab. Table 1 shows the results.
Because the p-value of ESN, LESN, and ISWLESN is less than 0.05, there are
significant differences in these activities. Moreover, the p-value of ISWLESN
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Figure 4: Prediction result of sEMG.

is the least one among the three features that indicates ISWLESN outper-
forms ESN and LESN significantly.

To compare the feature proposed in this letter with traditional features,
we introduce the integral of absolute value (IAV) (Cheng, Chen, & Shen,
2013) and mean frequency (MF; Zardoshti-Kermani, Wheeler, Badie, &
Hashemi, 1995).

The CSI of ISWLESN is bigger than the other features (see Table 2). The
CSI of ESN is less than that of IAV and MF, which indicates that ESN cluster-
ing is less than the traditional features IAV and MF. But LESN and ISWLESN
clustering is greater than that of IAV and MF.

Also, we calculate the DBI of IAV, MPF, ESN, LESN, and ISWLESN, with
the result recorded in Table 3. The table shows that it is possible to notice
that ISWLESN is better able to separate these activities according to DBI, as
the DBI of ISWLESN is smaller than those achieved by the others.

The features extracted by the three methods are respectively reduced by
PCA, and then input into a support vector machine (SVM). Table 3 shows
the recognition result of IAV, MF, ESN, LESN, and ISWLESN.

Table 4 demonstrates that ISWLESN has considerable success in the ac-
tivity classification by comparing it with others. The accuracy of ESN is
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Figure 5: Scatter plot of feature based on different method.

Table 1: p Value of ESN, LESN, and ISWLESN Based on ANOVA.

Feature ESN LESN ISWLESN

p-value 7.5165e−2 1.9609e−3 7.1956e−5

lowest in these five methods. But by improving the reservoir, LESN and
ISWLESN have higher accuracy than IAV and MF. For squatting, the ac-
curacy of ESN, LESN, and ISWLESN is greater than 97%. And for other
activities, the recognition rate of ISWLESN is higher than that of others.

5 Discussion and Conclusion

The feature extraction of sEMG, an old matter for research, plays a vital role
in machine learning, as the final classification or clustering performance
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Table 2: The CSI of IAV, MF, ESN, LESN, and ISWLESN.

Feature IAV MF ESN LESN ISWLESN

CSI 0.0138 0.0154 0.0121 0.0180 0.0212

Table 3: DBI of Feature Based on IAV, MF, ESN, LESN, and ISWLESN.

Feature IAV MF ESN LESN ISWLESN

DBI 4.8632 3.2546 5.0331 2.4779 1.8319

Table 4: Recognition Result of IAV, MF, ESN, LESN, and ISWLESN.

Going Going Sitting
Feature Falling Squatting Upstairs Downstairs Walking Down

IAV 80.17 90.16 84.57 92.72 80.82 82.73
MF 90.36 95.54 86.92 95.28 89.25 84.63
ESN 74.36 97.46 80.46 88.36 78.36 75.59
LESN 96.49 97.78 85.78 97.64 92.36 87.27
ISWLESN 96.58 98.83 96.83 98.35 97.45 98.57

is highly dependent on the extracted features. This study aims to propose
a feature extraction method of sEMG based on an improved small-world
leaky echo state network. In this letter, we collected the sEMG during the
activities of falling, walking, sitting, squatting, going upstairs, and going
downstairs. Then we extracted corresponding features by ESN, LESN, and
ISWLESN and used PCA to reduce feature dimension. To compare the fea-
tures proposed in the letter with traditional features, we introduce IAV and
MF. Results show that the clustering performance of ISWLESN is better than
that of other features.

sEMG is a dynamic chaotic time series, and its traditional feature extrac-
tion is usually complex and challenging. First, a lot of useful information
is lost in the process of feature extraction, which makes it difficult for clas-
sification with the traditional feature extraction methods to achieve higher
accuracy. Second, there may be greater redundancy among feature extrac-
tion of sEMG from different angles. Third, feature sets of sEMG apply only
to specific classification tasks. If different kinds of sEMG can be correctly
distinguished in accordance with the descriptions of sEMG, the descrip-
tion of sEMG can be used as a feature. Therefore, the selection of features
depends on the prior sample set, and it is worth considering whether the
prior sample set can represent all the cases.

The feature extraction based on ISWLESN is approximately reversible—
that is, the original sEMG can be restored almost from the extracted features
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of sEMG. Thus, the loss of information in the feature extraction process is
less, which ensures that the classification of sEMG based on ISWLESN can
achieve higher classification accuracy. Moreover, ISWLESN can describe
nonlinear chaotic time series appropriately. Therefore, the feature extrac-
tion of sEMG based on ISWLESN can well reflect the nonlinear dynamic
characteristics of the sEMG time series.

Since feature extraction of sEMG based on ISWLESN is an unsupervised
method, more useful information is retained in the feature extraction pro-
cess rather than selecting useful information for a particular classification
task. Therefore, this method has a broad application prospect in multitask
classification.
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